The Crystal Structure of Pinnoite

By F. Paton and S. G. G. MacDonald*
Carnegie Laboratory of Physics, University of St. Andrews, Queen's College, Dundee, Scotland

(Received 19 March 1957 and in revised form 5 June 1957)

Abstract

The space group of pinnoite has been determined unambiguously as $P 4_{2}$ but the reflexions for $l=0, h+k$ odd, are either absent or extremely weak showing that pseudo-symmetry is present, the space group conforming closely to $P 4_{2} / n$. The structure, obtained by making use of this pseudosymmetry and employing Patterson sections and projections, has been refined by successive twodimensional syntheses and it is found that the B atoms are tetrahedrally surrounded by O atoms and that the Mg atom is at the centre of an octahedron of O atoms. This arrangement suggests that the chemical formula should no longer be written as $\mathrm{MgO} . \mathrm{B}_{2} \mathrm{O}_{3} .3 \mathrm{H}_{2} \mathrm{O}$ but as $\mathrm{MgB} \mathrm{O}(\mathrm{OH})_{6}$. A surprising and noteworthy feature of the structure is the presence of long tubular voids running parallel to the c axis, an arrangement not normally found in borate compounds.

Introduction

Pinnoite is found associated with earthy boracite in the upper kainite layers at Stassfurt. The chemical formula is $\mathrm{MgO} . \mathrm{B}_{2} \mathrm{O}_{3} .3 \mathrm{H}_{2} \mathrm{O}$ and the substance is classed by Groth (1908) as a hydrated metaborate. Stadler (1947) has cast doubt on this classification in an X-ray investigation which yielded the space group and cell dimensions. It was therefore felt worthwhile to determine the structure completely.

Experimental

The specimens used were kindly supplied by Dr G. F. Claringbull of the British Museum of Natural History. As had been found by previous investigators, it was impossible to isolate a crystal with developed faces, so firmly intergrown are the individual crystals. In fact even after careful examination under the microscope it was found impossible to obtain a crystal that did not exhibit at least slight twinning.

Using the best of the fragments, and employing $\mathrm{Cu} K \alpha$ radiation, oscillation pictures and equiinclination Weissenberg photographs of the zero layers and all obtainable c-axis upper layers were taken. Multiple-film techniques were employed and the relative intensities were estimated visually with the aid of a calibration strip produced with the X-ray set under carefully controlled conditions.

Unit cell and space group

The unit cell has the dimensions

$$
a=7 \cdot 62 \pm 0.01, \quad c=8.19 \pm 0.01 \AA
$$

and contains four molecules of $\mathrm{MgO} . \mathrm{B}_{2} \mathrm{O}_{3} .3 \mathrm{H}_{2} \mathrm{O}$. The space group is $C_{4}^{3}-P 4_{2}$ or $C_{4 h}^{2}-P 4_{2} / m$. This agrees with the results obtained by Stadler (1947), but the halving

* Present address: Department of Physics, University College of the West Indies, Mona, Jamaica, B.W.I.
of $h 00$ which he observed is in fact not found if long exposures are taken. The calculated and experimentally obtained values of the density are both $2 \cdot 29$ g.cm. ${ }^{-3}$.

Analysis

Because of the difficulty experienced in finding an untwinned single crystal, it was not found possible to differentiate experimentally between the two possible space groups. The use of intensity statistics (Wilson, 1949; Howells, Phillips \& Rogers, 1950) yielded no positive result, showing that if the atomic arrangement was not in fact centrosymmetric it could not be far from it. Another approach to the problem had to be found.

If the space group is taken as $P 4_{2} / m$, the presence of the mirror plane produces relationships between the coordinates of the atoms, reducing the number of independent coordinates. Because of this the z coordinates can be approximately determined using the method of Banerjee (1933). In addition, for $l=0$, the $h+k$ odd spots are either absent or extremely weak, showing that the space group is almost $P 4_{2} / n$. If the atomic arrangement in the c-axis projection is assumed to conform absolutely to this space group, an additional centre of symmetry is introduced at $x=\frac{1}{4}, y=\frac{1}{4}$, once again establishing relationships between the coordinates and reducing the number of independent variables. Using an extension of Banerjee's method to the special requirements of the space group, the x and y coordinates of the atoms can be approximately determined, allowing a rough test structure to be obtained. The above procedure was used but the structure it yielded refused to refine and it was therefore decided that the space group must be $P 4_{2}$.

Since the required absences for $P 4_{2} / n$ are so nearly satisfied, working in this space group with the origin taken at the centre of symmetry at $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$ from the fourfold axis eases the computational burden and

Fig. 1. Fourier projections of electron density (a) on (100), (b) on (001). Contours at intervals of $2 \mathrm{e} . \AA^{-2}$, the broken line being the $1 \mathrm{e} . \AA^{-2}$ contour.
should produce a structure different from the correct one in only minor respects. On this basis, and employing Patterson projections down the two principal axes and sections at $z=0$ and $z=\frac{1}{2}$, a trial structure was obtained which located the magnesium atom at the origin with an octahedral arrangement of oxygen atoms round it. The boron atoms were found to be surrounded by tetrahedral arrangements of oxygens.

Optical transforms (Hughes \& Taylor, 1953) were used in testing and improving the trial structure, which was then refined using successive Fourier and difference syntheses in both the a-axis and c-axis
projections. Fig. 1 shows the final two-dimensional electron-density projections obtained. The final reliability factors, R, defined as

$$
R=\Sigma| | F_{o}\left|-\left|F_{c} \| \div \Sigma\right| F_{o}\right|
$$

for the $h=0, l=0$, and general reflexions were $0 \cdot 19$, 0.31 and 0.21 respectively. The overall reliability factor was $0 \cdot 22$.

The reflexions for $l=0, h+k$ odd, have been ignored because of the assumption that the space group is $P 4_{2} / n$; their calculated values are thus all zero. This explains why the value of R in the zone containing these reflexions is rather high. Furthermore, it complicates the problem of assessing the accuracy of the final atomic coordinates given in Table 1. Since

Table 1. Atomic coordinates
Origin on 4_{2}

Atom	x / a	y / h	z / r
Mg	$0 \cdot 250$	0.250	$-0 \cdot 250$
B	0.393	0.383	-0.110
$\mathrm{~B}^{\prime}$	0.107	0.117	-0.390
O_{1}	0.000	0.000	0.010
O_{1}^{\prime}	0.500	0.500	0.490
O_{2}	0.339	0.238	0.013
O_{2}^{\prime}	0.161	0.262	0.487
O_{3}^{3}	0.488	0.302	-0.239
O_{3}^{3}	0.012	0.198	-0.261
O_{4}	0.228	0.988	-0.167
O_{4}^{\prime}	0.272	0.012	-0.333

Denotes atom related by pseudo-centre oi symmetry.
no estimate of the signs of these structure factors is possible, the conventional methods of determining accuracy (e.g. Cruickshank, 1949) break down and any figure quoted would be merely a guess. All the structure factors involved, however, are small so that their introduction into a Fourier synthesis should not alter the peak positions to any considerable extent.

Table 2 gives the F 's calculated from the final atomic coordinates compared with those experimentally observed, the latter having been put on an absolute basis initially by the method of Wilson (1942) and finally, for the zero-layer intensitics, by multiplying by a factor $\left|F_{c}\right| \div\left|F_{o}\right|$. The absolute values for reflexions on upper layer lines were obtained by using reflexions common to these and to zero layer line photographs.

Description of the structure

The structure of pinnoite is illustrated in Fig. 2. It exhibits no marked layer or chain structure, a fact which was expected since no features characteristic of these types of arrangement (Kenyon \& Taylor, 1953) were observed in weighted reciprocal lattice drawings. For convenience of description we may single out the $\mathrm{H}_{6} \mathrm{~B}_{2} \mathrm{O}_{7}$ group, which is linked as shown:

Table 2. Measured and calculated values of the structure factors

Each $\mathrm{H}_{3} \mathrm{BO}_{4}$ group is tetrahedrally arranged and the OH groups link on to magnesium atoms.
Taking the magnesium atom as the reference point of the structure, we find that each magnesium is surrounded by an octahedral arrangement of OH groups, each of which link to boron atoms. The structure, in fact, appears to bear out the arguments presented by

Stadler (1947), who suggested, on the basis of the behaviour exhibited under dehydration, that the water must be present in the form of OH groups. The chemical formula would appear to be more suitably given in the form $\mathrm{MgB}_{2} \mathrm{O}(\mathrm{OH})_{6}$ rather than in the usual manner as $\mathrm{MgO} . \mathrm{B}_{2} \mathrm{O}_{3} .3 \mathrm{H}_{2} \mathrm{O}$.

One unusual and interesting feature of the structure

Fig. 2. The structure of pinnoite with bonds shown. The relative sizes of the atoms give an indication of the magnitudes of their y co-ordinates.
is the presence of long tubular voids parallel to the c axis. Close packing might well have been expected since the borate ions are not cross-linked. As far as the present authors can discover, such a feature has

Table 3. Interatomic distances

Octahedron		Tetrahedron		Other distances	
$\mathrm{Mg}-\mathrm{O}_{2}$	$2.06 \AA$	$\mathrm{B}-\mathrm{O}_{1}$	$1.46 \AA$	$\mathrm{O}_{1}-\mathrm{O}_{2}{ }^{*}$	$3 \cdot 15 \AA$
$-\mathrm{O}_{3}$	2.04	$-\mathrm{O}_{2}$	1.54	$-\mathrm{O}_{3}{ }^{*}$	$2 \cdot 68$
$-\mathrm{O}_{4}$	$2 \cdot 12$	$-\mathrm{O}_{3}$	1.42	$-\mathrm{O}_{6}$ *	$3 \cdot 50$
$\mathrm{O}_{2}-\mathrm{O}_{3}$	$2 \cdot 93$	$-\mathrm{O}_{4}$	$1 \cdot 56$	$\mathrm{O}_{2}-\mathrm{O}_{2}{ }^{*}$	3.11
$-\mathrm{O}_{3}^{\prime}$	$2 \cdot 87$	$\mathrm{O}_{1}-\mathrm{O}_{2}$	2.35	$-\mathrm{O}_{3}{ }^{*}$	$3 \cdot 50$
$-\mathrm{O}_{4}$	$2 \cdot 95$	$-\mathrm{O}_{3}$	$2 \cdot 41$	$-\mathrm{O}_{4}{ }^{*}$	$3 \cdot 36$
$-\mathrm{O}_{4}^{\prime \prime}$	2.96	$-\mathrm{O}_{4}$	$2 \cdot 44$	$\mathrm{O}_{3}-\mathrm{O}_{4}{ }^{*}$	$2 \cdot 85$
$\mathrm{O}_{3}-\mathrm{O}_{4}$	$2 \cdot 76$	$\mathrm{O}_{2}-\mathrm{O}_{3}$	$2 \cdot 40$	$\mathrm{O}_{4}-\mathrm{O}_{4}{ }^{*}$	$3 \cdot 67$
$-\mathrm{O}_{4}^{3}$	3•11	$-\mathrm{O}_{4}$	$2 \cdot 53$		
		$\mathrm{O}_{3}-\mathrm{O}_{4}$	$2 \cdot 50$		

Denoted atom related by pseudo-centre of symmetry.

* Denotes atom in neighbouring molecule.
not been reported before in borates, and the reason for it is not clear.

The interatomic distances and bond angles are listed in Tables 3 and 4 . From these it will be seen that the

Table 4. Bond angles

$\mathrm{O}_{2}-\mathrm{Mg}-\mathrm{O}_{3}$	91°	$\mathrm{O}_{1}-\mathrm{B}-\mathrm{O}_{2}$	103°
$\mathrm{O}_{2}-\mathrm{Mg}-\mathrm{O}_{3}^{\prime}$	89	$\mathrm{O}_{1}-\mathrm{B}-\mathrm{O}_{3}$	113
$\mathrm{O}_{2}-\mathrm{Mg}-\mathrm{O}_{4}$	89	$\mathrm{O}_{1}-\mathrm{B}-\mathrm{O}_{4}$	108
$\mathrm{O}_{2}-\mathrm{Mg}-\mathrm{O}_{4}^{\prime}$	90	$\mathrm{O}_{2}-\mathrm{B}-\mathrm{O}_{3}$	108
$\mathrm{O}_{3}-\mathrm{Mg}-\mathrm{O}_{4}^{\prime}$	83	$\mathrm{O}_{2}-\mathrm{B}-\mathrm{O}_{4}$	1110
$\mathrm{O}_{3}-\mathrm{Mg}-\mathrm{O}_{4}^{\prime}$	97	$\mathrm{O}_{3}-\mathrm{B}-\mathrm{O}_{4}$	113

magnesium groups are very close to the perfect octahedron, the $\mathrm{Mg}-\mathrm{O}$ distances being in agreement with those already given in the literature. The bond angles of the tetrahedral group are as expected, but the $\mathrm{B}-\mathrm{O}$ distances are not all the same. TheB- $\mathrm{O}_{2} \mathrm{H}$ and $\mathrm{B}-\mathrm{O}_{4} \mathrm{H}$ distances agree with the values given for this bond in datolite (Ito \& Mrri, 1953) and the other two agree with the $\mathrm{B}-\mathrm{O}$ distances in BO_{4} tetrahedra. This fact, together with the short $\mathrm{O}_{1}-\mathrm{O}_{3}^{*}$ distance, may indicate that the hydrogen is not directly associated with the O_{3}^{*} atom but takes part in hydrogen bonding between O_{1} and O_{3}^{*}.

We wish to express our thanks to Dr Claringbull for supplying the material for this investigation. One of us (F. P.) is also indebted to The Caird Trust for the award of a scholarship which made the carrying out of this research possible.

References

Banerjee, K. (1933). Proc. Roy. Soc. A, 141, 188.
Cruickshank, D. W. J. (1949). Acta Cryst. 2, 65.
Grote, P. (1908). Chemische Krystallographie, vol. 2. Leipzig: Engelmann.
Howells, E. R., Phillips, D. C. \& Rogers, D. (1950). Acta Cryst. 3, 210.
Hughes, W. \& Taylor, C. A. (1953). J. Sci. Instrum. 30, 105.
Ito, T. \& Mori, H. (1953). Acta Cryst. 6, 24.
Kenyon, P. A. \& Taylor, C. A. (1953). Acta Cryst. 6, 745.

Stadler, H. P. (1947). Miner. Mag. 28, 26.
Wilson, A. J. C. (1942). Nature, Lond. 150, 152.
Wilson, A.J. C. (1949). Acta Cryst. 2, 318.

